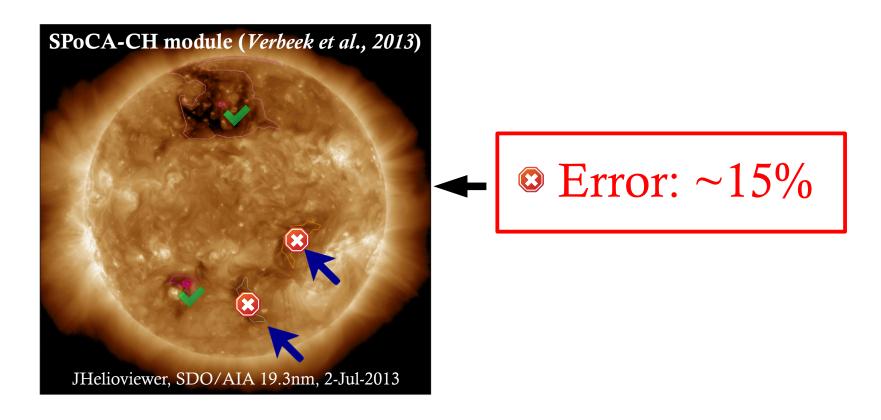
Improvements on Coronal Hole Detection using Supervised Classification

Martin A. Reiss^{1,2}, Véronique Delouille³, Stefan J. Hofmeister⁴, Ruben DeVisscher³, Benjamin Mampaey³, Manuela Temmer⁴, Astrid Veronig⁴

¹NASA Goddard Space Flight Center, Greenbelt, USA ²Space Research Institute, Graz, Austria ³Royal Observatory of Belgium, Brussels, Belgium ⁴University of Graz, Graz, Austria

Problem Statement

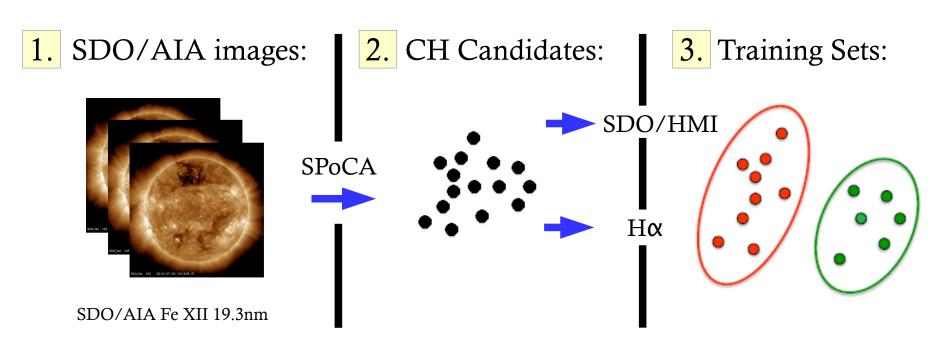
• It is difficult to study coronal holes in SDO/AIA images of the Sun in a consistent manner because they evolve in space and time, and are easily confused with filament channels.



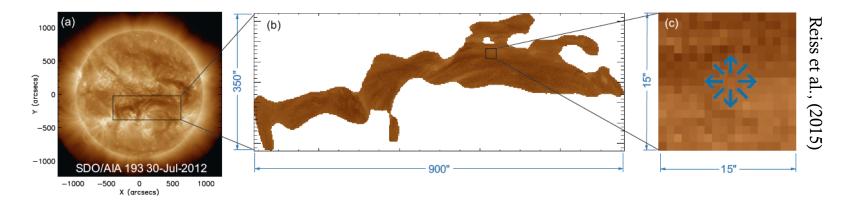
Work Approach

I. Data Preparation

We use the SPoCA-CH module (*Verbeek et al., 2013*) and prepare training sets of manually labeled *'coronal holes'* and *'filament channels'*.



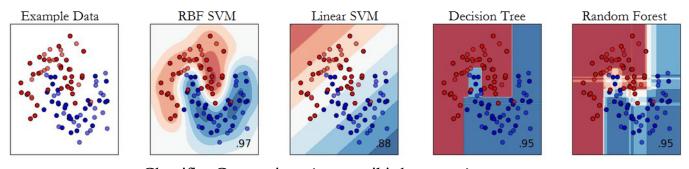
II. Attributes



- We study a set of decisive attributes including *shape measures*, magnetic flux properties, and first- and second-order image statistics.

III. Supervised Classification

- The attributes are used as input for *supervised classification* algorithms to design a suitable decision rule.



Classifier Comparison (www.scikit-learn.org)

Classifier Performance

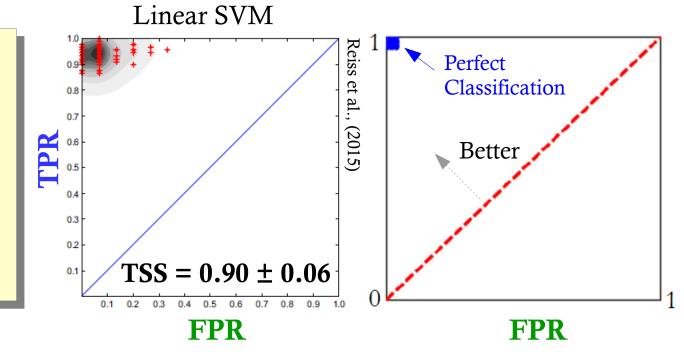
$$\label{eq:tss} \begin{split} \mathrm{TSS} &= \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} - \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}} \\ \downarrow & \downarrow \\ \mathbf{TPR} & \mathbf{FPR} \end{split}$$

TPR: Proportion of correctly predicted CHs among all CHs

FPR: Proportion of FCs that were classified as CHs among all FCs

Example:

- Time range [years]: 2011 2013
- Location:
 - $\pm 30^{\circ}$ in lon/lat
- **Imbalance:** 252 CHs and 46 FCs



Conclusion

- 1. We developed a new approach for the detection of coronal holes based on machine learning.
- 2. We find that all classifiers (*SVM*, *Linear SVM*, *Decision Tree*, and *Random Forest*) show good results (TSS ~ 0.90) (full-disk: TSS ~ 0.80).
- 3. Including magnetic field information systematically improves the performance.
- 4. We conclude that the developed approach is useful for a wide range of imaging data in solar physics.

Further Reading

Related References:

Reiss, M.A. et al. Improvements on coronal hole detection in SDO/AIA images using supervised classification,
J. Space Weather Space Clim. 5, A23 (2015).

Delouille, V. et al. Chapter 15 - Coronal Holes Detection Using Supervised Classification in Machine Learning Techniques for Space Weather, 365–395 (Elsevier, 2018).

Source Code:

https://bitbucket.org/vdelouille/coronal_hole_detection_ml

Contact Details:

martin.reiss@nasa.gov (GSFC, Building 21, Room 025)

More on: Feature Selection,

Class Imbalance, etc.